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ABSTRACT 
 

In this study, the combined effect of forced and natural convection heat transfer 

in presence of transverse magnetic field over a vertical slender, hollow cylinder 

embedded in a saturated porous medium with viscous dissipation effects included in the 

energy equation are studied. Both cases of the mixed convection heat transfer problem 

namely: the buoyancy aiding and the buoyancy opposing flows are investigated. The 

governing equations are solved using Keller box methods, and the solutions are 

obtained for two different nonsimilarity parameters. The first one is 
2/12/1

2/1

xx

x

RaPe
Pe
+

=ζ , 

which covers the entire mixed convection regime, where ζ=0 corresponds to pure free 

convection, and ζ=1 corresponds to pure forced convection. The second nonsimilarity 

parameter is 
pc
xgβ

χ = , which covers the mixed convection regime. The effects of the 

characteristic parameters on the velocity, temperature, local coefficient of friction and 

heat transfer rates are found and drawn for both cases of nonsimilarity parameters. 
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INTRODUCTION 
 

1. Introduction: 
 

It is very important to get better understanding of the flow in porous media. 

Many processes in nature involve transport processes in such media. In many parts of 

the world water that has been stored for thousands of years in large volumes of porous 

rock is an important asset. Similarly the world supply of oil was formed and stored, 

under rather special circumstances in porous rock formations. Other processes, which 

involve flow in porous media, are frost heaves, filtration or straining and sewage 

purification in sand beds. The flow of homogeneous fluids through porous media is 

sufficiently wide in scope to find application in many branches of applied science. By 

the term homogeneous fluid is meant essentially a single-phase fluid. This may be either 

a gas or a liquid. The study of fluid, which is electrically conducted and moves in a 

magnetic field, is known as a magnetohydrodynamics  (MHD). The simplest of this 

kind of the fluid is liquid metals for example mercury. However, the study of MHD 

flow in a porous media becomes very important in recent studies, specially when we 

cant neglect the effect of MHD, such that in the nuclear reactor, where the MHD effect 

is very dangerous and very important. 

In addition to that, the heat transfer through a porous media, for two centuries, 

had been a subject of extensive investigations, geothermal operations, and refrigeration 

cycles insulation. On the other hand, conjugate heat transfer plays a great rule in 

determining the thermal behavior of most engineering systems, as in heat exchangers. In 

general, the natures of the porous media with which deal are: 

1- Porosity, which is a measure of the pore space and hence of the fluid capacity of 

the medium. 
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2- Permeability, which is a measure of the ease with which fluids may transfer the 

medium under the influence of a driving pressure. 

 
2. Darcy and Non-Darcy Models: 
 

The bulk resistance to flow of a fluid through a solid matrix was first measured 

by Darcy (1856). Darcy experiment used nearly uniform-size particles that where 

randomly and closely packed, i.e., a non-consolidated, uniform, rigid and isotropic solid 

matrix (Nield and Bejan, 1999) 

The macroscopic flow was steady, one-dimensional and driven by gravity. The 

mass flow rate of the liquid was measured and the filtration or filter velocity was 

determined by dividing the mass flow rate by the product of fluid density and the cross 

sectional area of the channel. In applying volumetric force balance to this flow. He 

discovered that the bulk resistance can be characterized by the viscosity of the 

Newtonian fluid µ and the permeability of the solid matrix K . such that:  

                             pu
Kdx

dp µ
=−                   (1.1)         

Where pu the Darcy velocity in the porous medium, dimension of K  is in square of 

length, the experimental measurements have shown that the equation (1.1) is valid as 

long as the flow is slow enough or the pores are small enough so that O(Re)< 1, where 

Reynolds number is defined as: 

                                          
υ

2/1

Re Ku
=                        (1.2) 

In other words, the formulation of Darcy's law completely neglects the viscous 

force action along the impermeable surface and effects of the solid boundary. Accounts  

for the inertia effect Forchheimer’s modification of the Darcy's law is presented as 

(Bejan,1972): 
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                                     )(' 2

dx
dpKuKu

µυ
−=+            (1.3) 

Where K ′  is empirical constant correlated as(Plumb and Huenefeld,1981): 

                                  K ′  = 1.75 Do / (150 (1 – ε))                         (1.4) 

The order of Darcy's law is lower than the Navier-Stokes equation, so that, the no slip 

boundary condition is not required to be imposed on the impermeable boundary.To 

account for noslip condition effects Brinkman model has been used(Hsu and heng,1985) 

                                )(2 gpKuKu ρ
µε

+∇−∇=       (1.5) 

Recently, to combine two effects of non-Darcy model, the Brinkman Forchheimer’s 

extension has been used(Nield,1991). The governing equation becomes: 

                           )(' 22 gpKuKuKu ρ
µευ

+∇−∇=+      (1.6) 

In this model, it is assumed that the flow velocity is large enough or the pores are big 

enough so that: 

  1)(
2
1

>
υ

uKO        (1.7) 

 
3. Mixed convection (Natural convection versus forced convection): 
 

In the context of heat transfer, convection means the process of carrying the 

thermal energy away from a solid surface to an adjacent moving fluid in the presence of 

temperature differences. The convection process has two contributing mechanisms: 

1- The conduction of heat from a solid surface to a thin layer of adjacent fluid. 

2- The movement of hot fluid particles a way from the solid surface. 

Where the movement of the fluid particles can be attributed to pressure changes, to 

buoyancy, or to a combination of both. Thus, the study of convective heat transfer is 

intimately related to the study of fluid flow. 
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In general, the discussion of convective heat transfer can be divided into two areas, 

namely, forced convection and natural convection, mixed convection occurs when both 

modes of convection act together. 

The forced convection is very important rather than natural convection, because 

of it is industrial applications, Most of industrial heating or cooling devices such as, 

heat exchangers, condensers and boilers, etc. Natural convection, on the other hand, 

plays an important role in thermal pollution, and in ecological problems. 

Mixed convection heat transfer is combination of natural and forced convection, the 

extreme limits of mixed convection satisfies pure forced convection and pure natural 

convection limits. 

 
4. Conjugate heat transfer: 
 

Conjugate heat transfer refers to the heat transfer processes involving an 

interaction of conduction in a solid body and convection in the fluid surrounding it. 

Thus the analysis of this type of heat transfer processes necessitates, and coupling of the 

conduction in solid tube wall is greatly influenced by the convection in fluid flowing 

over it. Another example of practical importance of conjugate heat transfer is found in 

fins. The conduction within the fin and convection in the fluid surrounding it, must be 

simultaneously analyzed to obtain vital design information. 

 
5. Heat transfer in magneto hydrodynamic (MHD) system: 
 

Magneto hydrodynamics (MHD) is a relatively new but important branch of 

fluid dynamics. It is concerned with the interaction of electrically conducting and 

electromagnetic fluids. When a conducting fluid moves through a magnetic field, an 

electric field and consequently a current may be induced and, in turn, the current 

interacts with the magnetic field to produce a body force on the fluid. MHD flow occurs 

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com

 5

in the sun, the earths interior, the ionosphere, and the stars and their atmosphere, and 

many new devices have been made which utilize the fluid electromagnetic field 

interactions, such as traveling wave tubes, electrical discharges, and many others. 

Holman (1990) had examined some basic electromagnetic concept as follows: 

For a neutrally charged system the current density  J
r

 is given by: 

                                                                    .= E
rr

σJ        (1.8) 

Where σ is the electrical conductive and  E
r

 is the electric field vector. The magnetic 

field strength B
r

 is expressed by (Holman ,1990): 

HB o

rr
.µ=      (1.9) 

Where µ0 is called the magnetic permeability and H
r

 is the Magnetic field intensity. The 

force exerted on a system of charged particles by an electric field is given by 

(Holman,1990): 

                                                                EF ee

rr
.ρ=                (1.10) 

Where ρe is the charge density. The magnetic force exerted on a current carrying 

conduction is (Holman,1990): 

                                                                BJFm

rrr
Χ=      (1.11) 

The total electromagnetic force is given by (Holman,1990): 

                                                               BJEF eem

rrrr
Χ+= .ρ     (1.12) 

The work done on the system per unit time by the electromagnetic force is 

(Holman,1990):  

 

                                                              VFW emem

rr
.=                 (1.13)  

Where V
r

 is the velocity of the conductor. 

The magnetic field induces a current in the conductor Holman (1990): 
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                                             )( BVJind

rrr
Χ= σ      (1.14) 

Then, the conduction current is defined as Holman (1990): 

                                                           )( BVEJ c

rrrr
Χ+= σ      (1.15) 

And the total current flow is Holman (1990): 

                                                          VJJ ec

rrr
.ρ+=        

For the electromagnetic work Holman (1990)  : 

                                                       
σ

cc
em

JJJEW
rr

rr .. −=      (1.17)          

The fluid dynamical aspects of MHD are handled by adding the electromagnetic force 

and work to non-Darcy equations and energy equation respectively. 

The momentum equation in x-direction (Kaviany, 1991): 

                              
µε
σρ

µυ

2
02 )(' BKg

dx
dpKuKu −+−=+     (1.18) 

Where the term   (
µε
σ 2

0BK
) represents the effect of magnetic field force on the fluid 

velocity.  And the energy equation becomes(Kaviany, 1991): 

 2
2
02 )'()( u

C
BuKu

KC
u

r
Tr

rrr
Tv

x
Tu

pp ρ
σα

+++
∂
∂

∂
∂

=
∂
∂

+
∂
∂              (1.19) 

Where the term   ( 22
0 uBσ ) represents the work done by the magnetic field force on the 

fluid. 
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REVIEW OF LITERATURE 

 

1. Introduction: 
 

Since the early work of Darcy in the 19th century, extensive investigation have 

been conducted on flow and heat transfer through porous media, covering range of 

different fields and application such as geothermal operation, nuclear reactors, 

transpiration cooling, and building thermal insulation.  

 
2. Magneto hydrodynamic flow: 

 
Magneto hydrodynamics has been a subject for many researchers in the field. 

Henoch and Meng (1991) used the magnetic force to retard the transition to the 

turbulent boundary layer and reduce the frictional Darcy force. Kim and Lee (2000) set 

up an experiment using a circular cylinder where electrodes and magnets are installed in 

an alternative sequence in axial direction of the cylinder to generate magnetic force in 

the circumferential direction. Many authors had studied the effects of magnetic on 

mixed, natural and force convection heat transfer problems. Chandra and Gosh (2001) 

studied the effect of magnetic field on electrically conducted visco-elastic fluid; they 

found in such a flow that the velocity field decreases with increase of magnetic field 

strength. 

In the following a review of the works and the results of some researchers on 

this field is addressed. 
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2.1     Effect of MHD on natural convection: 
 

Sparrow and Cess (1961) investigated the free convection heat transfer due to 

the simultaneous action of buoyancy and induced magnetic forces, the analysis is 

carried out for laminar boundary-layer flow about an isothermal vertical plate. They 

found that the free convection heat transfer to liquid metals may be significantly 

affected by the presence of magnetic field, but that very small effects are experienced 

by other fluid.    

Raptis and Singh (1983) studied the effect of a uniform transform transverse 

magnetic field on the free convection flow of an electrically conducting fluid past an 

infinite vertical plate for both the classes of impulsive as well as uniformly accelerated 

motion of the plate. They found that the effect of the magnetic field is to increase the 

velocity field on both cases.   

Jha (2001) discussed the combined effect of natural convection and uniform 

transverse magnetic field on the quette flow of an electrically conducting fluid between 

two parallel plates for impulsive motion of one plate, Comparative study is made 

between the velocity field for magnetic field fixed with respect to plate and a fixed 

magnetic field with respect to the fluid  

Hossain (1992). had studied the effect of viscous and joule heating on the flow 

of an electrically conducting and viscous incompressible fluid past a semi-infinite plate 

of which temperature varies linearly with the distance from the leading edge and in the 

presence of uniform transverse magnetic field. The equations governing the flow are 

solved numerically applying the finite difference method along with Newton's 

linearization approximation. 

Duwairi and Damseh (2004,a) studied the effects of MHD-natural convection 

heat transfer from rading vertical porous surfaces, they found nonsimilarity parameter to 
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solve this problem with fluid suction or injection along the stream wise coordinate. 

Three dimensionless parameters had been found to describe the problem, and they 

found that increasing the magnetic field strength decreases the velocity and the heat 

transfer rates inside the boundary layer. 

Recently, Duwairi and Duwairi (2004) studied the thermal radiation heat transfer 

effects on the Rayleigh flow of gray viscous fluids under the effect of a transverse 

magnetic field. The free convection heat transfer problem from constant surface heat 

flux moving plate is selected for study. It is found that the increasing of the magnetic 

field strength decreased the velocity inside the boundary layer 

 
2.2     Effect of MHD on mixed convection heat transfer: 

 
The combined effects of forced and natural convection heat transfer in the 

presence of transverse magnetic field from vertical surfaces are studied by many 

Researchers. Garandet et al. (1992) had analyzed the equations of the 

magnetohydrodynamics that can be used to model the effect of a transverse magnetic 

field on the buoyancy driven convection in a two dimensional cavity. 

Aldoss et al.(1995)  Studied the effect of mixed convection heat transfer from a 

vertical plate embedded in a saturated porous medium and subjected to a uniform 

magnetic field. They found the strength of the magnetic field has an effect on the 

Nusselt number and wall shear stress, and increasing the magnetic field strength has the 

effect of decreasing the local Nusselt number in the mixed convection regime. 

Tashtoush (2000) introduced a new analytical solution for the effect of viscous 

dissipation on mixed convection flow and heat transfer about an isothermal vertical wall 

embedded in Darcy and non-Darcy porous media with uniform free stream velocity, the 

effect of viscous dissipation on mixed convection in both regimes has been analyzed. A 

good agreement was found between the numerical and analytical solutions. It was found  
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from the Nusselt number results that viscous dissipation lowers the heat transfer rate in 

both Darcy and Forchheimer’s flow regimes.  

Recently, Dawairi and Damseh (2004,b). Studied the MHD-buoyancy aiding 

and opposing flows with viscous dissipation effects from radiate vertical surfaces. They 

found that increasing the Hartman number had decreased the velocity inside the 

boundary layer and the heat transfer rates from the porous plate, and increasing the 

Eckert number or the viscous dissipation effect is found to increase the conductive fluid 

temperature and consequently decrease the heat transfer rates. 

 
3. Conjugate heat transfer: 

 
The conjugate heat transfer from vertical surfaces has attracted many researchers 

because of its importance in many applications, such as in the nuclear reactor, 

exchangers. Luikov et al.(1971) studied the conjugate heat transfer problem of laminar 

forced convection along a flat plate and they solved the problem by means of the 

generalized Fourier sine transformation and a series expansion in terms of the Fourier 

variable. 

Karvinen (1978) presented an approximate method for solving the conjugated 

heat transfer from a flat plate in the presence of uniform internal heat generation. The 

results have been compared with a variable experimental data. 

Sparrow and Chyu (1982) carried out a conjugate heat transfer analysis for a 

vertical plate fin washed by laminar forced convection boundary layer flow. They 

assumed the heat conduction in the fin to be one dimensional, and the results have been 

compared with those from the conventional methods. 

Huang and Chen (1984) have studied a vertical thin circular pin fin in forced 

convection flow. They have considered one dimensional heat conduction, the governing 

equations have been solved by an efficient implicit difference method. And the results 
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are presented for a range of values of conjugated convection conduction parameter and 

the transverse curvature parameter. 

Velusamy and Garg (1988) have obtained the heat transfer characteristics for a 

vertical cylindrical fin washed by a combined forced and free convective flow. The 

effects of various parameters have been analyzed numerically by treating one- 

dimensional heat conduction in the fin. The conjugate heat transfer from vertical or 

horizontal surfaces as well as horizontal cylinders embedded in porous media have 

extensively investigated by Kimura and Pop(1991, a and b), Kimura and Pop (1992), 

Kimura and Pop(1994), Vynnycky and Kimura(1994),  Pop et al..(1995), Lesnic et 

al.(1995), Kimura et al.(1997). 

 recently, Jilani et al.(2002) had studied the problem of conjugate forced 

convection. Taking into account conduction heat transfer over a vertical cylinder with 

heat generation they found that higher length to diameter ratio corresponds to higher 

flow Reynolds number which in turn gives rise to higher convective heat transfer. 

 
4. Cylindrical geometry: 

 
Aldoss et al.(1996) analyzed the problem of non-Darcian mixed convection 

about a vertical cylinder embedded in a porous medium. They found nonsimilarity 

solutions for the case of variable wall temperature and variable surface heat flux. They 

found that the Non-Darcian model results are much different than those obtained using 

Darcian model alone. A boundary parameter has the effect of reducing the heat transfer 

rates in the entire regime, while the inertia parameter decreases the heat transfer rates in 

the natural convection regime and increases it in the forced convection regime.  

Pop and Na (2000) made a numerical study of the conjugate free convection 

over a vertical slender, hollow, circular cylinder with the inner surface at constant 

temperature and embedded in porous medium, and by using a nonsimilarity 
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transformation. They solved the problem and found the effects of the conjugate 

parameter on the velocity and heat transfer rates inside the boundary layer. Also they 

found that the convection heat transfer rates increase with increasing in the radius of the 

cylinder, the temperature of the fluid will increase as the axial distance increases. And 

the temperature of the outer surface of the cylinder will decrease as the conjugate 

parameter increases. 

 Takhar et al.(2000) studied the problem of mixed convection flow over a 

continuous moving vertical cylinder under the combined buoyancy effect of thermal and  

mass diffusion, the surface skin friction and heat transfer rates increase with the 

increase of buoyancy forces, and the heat transfer rate was found to increase with the 

increase in the cylinder curvature. 

Jilani et al.(2002) had studied the problem of the conjugate force convection 

taking into account conduction heat transfer over a vertical cylinder with heat 

generation, they found that higher length to diameter ratio corresponds to higher flow 

Reynolds number which in turn gives rise to higher convective heat transfer. 

Recently, Duwairi and Al-araj (2004) had studied the combined effects of forced 

and natural convection heat transfer in the presence of transverse magnetic field from a 

vertical cylinder with radiation heat transfer effects from its surface. The buoyancy 

aiding and the buoyancy-opposing flows are investigated with viscous dissipation 

effects included in the governing equations they found that the increasing of the mixed 

parameter increases the velocity and temperature gradients for the buoyancy- aiding 

flow, and decreases the velocity and heat rates for the buoyancy-opposing flow. 
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5. Present contributions to the previous work: 
 

In the present study we propose a mathematical model to investigate the 

conjugate problem of mixed convection over the out side surface of a vertical slender, 

hollow, circular cylinder which is embedded in a porous medium with MHD and 

viscous dissipation effects included in the governing equations, the temperature of the 

inner surface of the cylinder is kept at a constant value Tb and the temperature of the 

outer surface is determined by the conjugate boundary condition on the outer surface of 

the cylinder, The viscous dissipation effects include in the energy equation and the 

MHD effects are included in both energy and momentum equations. The boundary layer 

equations outside the cylinder and the one dimensional heat conduction equation for the 

hollow cylinder are simultaneously solved. these equations are solved by finite 

difference method known as Keller-box Scheme.The results obtained in terms of 

velocity, temperature, skin friction coefficient and local Nmussel number for different 

dimensionless groups are presented and drawn.  

  

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com

 14

 
PROBLEM FORMULATION 

 

1. Introduction: 
 

Several analytical studies have been performed in recent years relating to the 

problem of steady two-dimensional convection about an infinite long vertical cylinder. 

In most of these studies a linear orthogonal coordinate system is used. Further more, it 

is assumed that Darcy's law and the boundary layer approximation are applicable. 

However, the inertial and boundary effects are expected to play significant roles in 

momentum and heat transfer rates where the Reynolds number is large. This is 

especially true for the case of either the high Rayleigh number regime or for the high 

porosity media. 

 
2. Analysis: 
 

      The geometry considered is vertical slender, hollow circular cylinder with inner 

and outer radii ri and r0, respectively, which embedded in a fluid- saturated porous 

medium as shown in fig. (3.1). 

      To combine natural and forced convection, the fluid is viscous and electrically 

conducted so the influence of transversely magnetic field is considered on such a flow. 

The following important assumptions are made in order to obtain the governing 

equations: 

1- The flow is steady, laminar, incompressible and two-dimensional. 

2- The Boussinesq approximation is valid. Which is a two part approximations:(a) 

it neglects all variable property effects in the three governing equations, excepct  
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for density in the momentum equations, and (b) it approximates the density               

difference term with a simplified equation of state 

                                                       ))(1( ∞∞ −−= TTβρρ       (3.1) 

Where β is the volumetric coefficient of thermal expansion. 

3- The fluid and solid matrix are everywhere in local thermodynamic equilibrium.  

4- The Thermo physical properties of the fluid are homogeneous and isotropic. 

5- The temperature of the fluid is everywhere below the boiling point. 

6- The cylinder surface is impermeable, with no injection at the wall. 

7- The saturated porous medium considered as a continuum. 

8- The magnetic field is uniform throughout the boundary layer. 

9- The heat flux by conduction inside the cylinder is one-dimensional. 

10- The flow field a round the cylinder is assumed to be axsymmetric.               

Under these assumptions the governing equations which describing the problem are 

(Kaviany, 1991): 

Continuity equation: 

                      0)()(
=

∂
∂

+
∂

∂
r

r
x
ur ν           (3.2) 

X-momentum equation: 

                     )(' 2
02 g

dx
dpKu

B
uKu ρ

µµε
σ

υ
+−=++       (3.3) 

Energy equation: 

     2
2
02 )'()( u

C
BuKu

KC
u

r
Tr

rrr
T

x
Tu

pp ρ
συαν +++

∂
∂

∂
∂

=
∂
∂

+
∂
∂   (3.4) 

Where x and r are the axial and radial coordinates, and the corresponding velocities are 

u and v respectively, the gravitational acceleration g is acting downward in the direction 

opposite to the x coordinate. The non-Darcy effects are introduced through the  
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term ( 2' uK
υ

) in the momentum equation. This term represents the effect of inertial 

forces, while in this study had neglected the term (
2

2

r
u

∂
∂

ε
µ ), this term represents 

boundary layer effects, so that the no-slip velocity boundary condition is not needed.   

The viscous dissipation effect is introduced by the two terms 

( 32 ' u
KC
Ku

KC pp

+
υ ), in the energy equation ( Murthy and Singh,1997). In addition, the 

magnetic effect is introduced into the governing equations through two terms:( u
B

µε
σ 2

0 ) 

In the momentum equation, which   represent the effect of magnetic force, and   

( 2
2
0 u

c
B

pρ
σ

) in the energy equation, which represent the magnetic work on the viscous 

fluid. 

 
3. Boundary condition: 
 

The system of equation (3.3. -3.4.) are constrained to the following boundary 

conditions: 

Conduction boundary condition: as shown in Fig (3.1) the inner surface of the cylinder 

is held at a constant temperature Tb, while the temperature of the ambient fluid is T∞, 

where Tb>T∞. The outer surface of the cylinder is held at a variable temperature 

T(x,ro),which is determined from the heat conduction equation inside the cylinder as 

following: 

      0)(1
2

2

=
∂
∂

+
∂

∂
∂
∂

x
T

r
Tr

rr
ss      (3.5) 

Where, Ts is the temperature inside the solid cylinder. 

If equation (3.5) is normalized by introducing the dimensionless variables: 
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or
rr =   ,     

L
xx = , 

T
TTs

s ∆
−

=θ     (3.6) 

Where ∆T=Tb-T∞ and by substitution equation (3.6): 

  0)()(1
2

2
2 =

∂
∂

+
∂

∂
∂
∂

xL
r

r
r

rr
sos θθ      (3.7) 

Assuming that 1<<
L
ro , then the axial conduction temperature, 2

2

x
T s

∂
∂ , can be 

neglected, so that equation (3.7) becomes 

0)(1
=

∂
∂

∂
∂

r
r

rr
sθ         (3.8) 

Subject to the conditions: 

At r = ri :  Ts = Tb        (3.9) 

 

 At r =  ro  :  Ts= T(x,r0)  

The solution of equation (3.8), with respect to the conditions (3.9), is: 

    
( )
( )i

i
bobs rr

rrTrxTTT
/ln
/ln)),((

0

−+=                             (3.10) 

On the other hand, at the outer surface of the cylinder the heat flux from the solid and 

fluid-porous medium interface are equal: 

 At  r = r0 :   r
rxTk

dr
rdTk o

m
os

s ∂
∂

−=−
),()(               (3.11) 

Substitute equation (3.10) in equation (3.11) this yield: 

At r= r0 : v  =0 , T=T(x,ro) 

Where  
r

rxT
r
rr

k
kTrxT o

i

o
o

s

m
bo ∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

),(ln),(   (3.12) 

And when r→ ∞: u = ∞u  , T=T∞
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            Figure.1 Schematic of physical model and coordinate system 
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4. Non-similarity approach: 
 
4.1    Introduction: 
 

When the similarity solution is not available in some problems, the non-

similarity solution will be used. To solve a non-similar boundary layer problem by non- 

similarity method, it is necessary to execute a definite succession of steps. First, the 

cylindrical coordinate (x,r) are placed with properly selected dimensionless coordinate 

(ζ,η) appropriate for the problem. The η variable depends on both x and r, while the non 

similarity variable ζ is function of x only, the dependent variables in the governing 

equations are also transformed in terms of new variables, velocity components are 

replaced by a reduced stream function f(ζ,η), and for the thermal field a dimensionless 

temperature Θ(ζ,η), is introduced.  Second, the conservation equations and their 

boundary conditions are transformed in terms of the new variable. The end results of the 

transformation yield a system of partial differential equations of f(ζ,η), and Θ(ζ,η),and 

their partial derivatives. 

4.2    Performing the case of study by nonsimilar method: 

In this system of equations (3.2-3.4) two cases will study as following: 

A: In the system of equations (3.2-3.4) and in order to satisfy the continuity equation 

define the stream function ψ as following:(Aldoss et al., 1995) 

 
rr

r
u o

∂
∂

=
ψ   

 
xr

ro

∂
∂

−=
ψν           (3.14) 

And introduce the following dimensionless variables in the transformations: 

     2/12/1

2/1

xx

x

RaPe
Pe

+
=ζ                  (3.15) 
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                           1
2

2/1

22
1 −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ζη o

o
x

r
r

rPe
x

      (3.16) 

                          12/1 ),(),( −= ζηζαηζψ fPex       (3.17) 

                          
∞

∞

−
−

=
TT
TT

b

),( ηζθ        (3.18) 

Where ζ is the nonsimilar mixed convection parameter, the case of ζ=0 corresponds to 

pure free convection and ζ =1 corresponds to pure forced convection. 

B: In the system of equations (3.2-3.4) and in order to satisfy the continuity equation 

define another stream function ψ as following: 

 
rr

r
u o

∂
∂

=
ψ   

 
xr

ro

∂
∂

−=
ψν           (3.19) 

And introduce the following dimensionless variables in the transformations: 

           
pC
xgβχ =        (3.20) 

                           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

22
1 2

2/1 o

o
x

r
r

rPe
x

η       (3.21) 

                          ),(),( 2/1 ηχαηχψ fPex=       (3.22) 

                          
∞

∞

−
−

=
TT
TT

b

),( ηχθ        (3.23) 

Where χ is the nonsimilar and viscous dissipation parameter, χ ≡ Gex= gßx/Cp. where 

χ=0,corresponds to no heat transfer by viscous dissipation, for the two cases, by 

differentiate the above system of equations and substitute it in momentum and energy 

equations (3.3-3.4) this yields to: 
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A: 

  Momentum equation: 

       { } θζ ′−±=
′′+′′

∗
22 )1()(Re ffH          (3.24) 

and energy equation: 

     ( ) { }( ) ( ) 0Re)1(1
2
11 3\2\ =+−++′+′+′′+

∗∗∗

fGefHGef εθθλζθληζ              (3.25) 

B: 

  Momentum equation: 

       ( ){ } θ ′±=
′

′+′′
x

x

Pe
Ra

ffH 2Re        (3.26) 

 and energy equation: 

( ) { }( ) ( )[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂′−

∂
∂′=′+′−++′+′+′′+

χ
θ

χ
θχεχθθλθλη ffffH

Ra
Pe

f
x

x 32 Re)1(1
2
11  (3.27) 

Note that: in the case A, where 2/12/1

2/1

xx

x

RaPe
Pe

+
=ζ  is identified as the mixed convection 

parameter. For the case B: 
pC
xgβχ = corresponds to the viscous dissipation effects on 

mixed convection regime, the case of χ=0 corresponds to no viscous dissipation effects, 

note that 
x

x

Pe
Ra

 is the mixed convection parameter and the case of 
x

x

Pe
Ra

=0 corresponds 

to pure forced convection while the case of 
x

x

Pe
Ra

→ ∞ corresponds to pure natural 

convection, and the plus and minus signs correspond to buoyancy aiding and buoyancy 

opposing flows respectively.  

These two systems of equations (3.24-3.27) are solved with the following boundary 

conditions 
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A: 

0),(),(
)0,(1)0,(0)0,(

2\

\

=∞=∞

=−= ∗

ζθζζ

ζθζθζ

f
pf

   (3.28) 

where P* represents the conjugate conduction parameter, define as: 

                        
λζ
1ln2*

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

o

s

m

r
r

k
kp                    (3.29) 

B: 

0),(1),(
)0,(1)0,(0)0,( *

=∞=∞′
′=−=

χθχ
χθχθχ

f
Pf

   (3.30) 

where P* represents the conjugate conduction parameter for the B case, define as: 

λ
1ln2*

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

o

s

m

r
r

k
kP       (3.31) 

Noting that in the previous system of equations the primes denote to the partial 

differentiations with respect to η, while H  represents the effects of the magnetic field 

in the boundary layer, where these effects are absent from the problem when H =1 

The viscous dissipation heat transfer effects are represented by the local Gebhart 

number Gex, where the viscous dissipation heat transfer effects are absent when Gex=0. 

Also, the inertial effects are introduced by the Forchheimer coefficient dependent 

Reynolds number defined as:
υ

∞′
=

uK
Re , where Re=0 corresponds to Darcy mixed 

convection region. In addition to that, the effects of the curvature cylindrical surface are 

presented in these equations by the curvature parameter λ, which is defined 

as: 2/1

2

xo Per
x

=λ . Where it is possible to reduce the problem to the mixed convection heat 

transfer over a flat plate by putting λ=0. 
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Some of the physical quantities of interest include the velocity component u and v in the 

x and r directions respectively, the local nusselt number Nux which is defined as 

Nux=hx/k, where k is the effective thermal conductivity of the porous matrix fluid. 

k=(1-ε).ks +ε.km  (Nield and Bejan,1999). and hx is the local heat transfer coefficient, 

and the wall shear stress (τw) which is defined as: τw=µ(∂u/∂r)|r=ro . 

A: 

),(2 ηζζ fuu ′= −
∞                  (3.32)  

                      ( )ff
r

−′= −− ηζλαν 11                          (3.33) 

                    [ ] )0,(
)0,(

2/12/1 ζθ
ζθ ′

−=
+ xx

x

RaPe
Nu

          (3.34) 

                   [ ] )0,(.Pr.232/12/1
ζf

RaPe

PeCf

xx

xx ′′=
+

      (3.35) 

 

B: 

),( ηχfuu ′= ∞                   (3.36)  

                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′−
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛−= ∞ fff

x
u

r
ro η

χ
χ

α
ν 2

2
1 2

1

            (3.37) 

         
)0,(
)0,(

2/1 χθ
χθ ′

−=
x

x

Pe
Nu

                (3.38) 

                   )0,(.Pr.22/1 χfPeCf xx ′′=       (3.39)  
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a) Aiding flow 

 

 

U∞ , T∞ 

 

b) Opposing flow 

U∞ , T∞ 

 
 

 

Figure.2 Schematic of MHD-conjugate cylinder. a) Aiding flow. b) Opposing flow 
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NUMERICAL SOLUTION 

 

1. Introduction: 
 

In recent years a large number of numerical methods have been developed for 

the solving of boundary layer equations. Such as the finite difference method, Galerkin 

method, and finite element method. Of these, the finite difference method is at present 

the most common for the boundary layer equations. 

In the finite difference approach, the dependent variables are considered to exist 

only at discrete points. Derivatives are approximated by finite difference resulting in an 

algebraic representation of the partial differential equation. Many different finite 

difference representations are possible for any given partial differential equation 

There are two different ways to convert a differential equation into finite 

difference equation, namely Implicit and Explicit methods. In an explicit method the 

unknown values may be found directly at a grid points in terms of the known values at 

previous step. However, in the implicit method, the unknown values at a grid point are 

not only a function of the previous known values but also a function of unknown values 

at the same step. This requires solution of a set of simultaneous algebraic equations, 

which are resulted when the difference equations are written for all interior points and 

the boundary points if the boundary conditions have a derivative forms. In most cases, 

implicit finite difference techniques tend to be numerically stable and significantly 

larger steps, on the other hand, explicit finite difference techniques tend to be less 

stable, less calculations and then less time and storage by the computer. 
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2. Solution of mass, momentum and energy equations: 
 

To solve these systems of equations (3.24-3.27) with it is boundary conditions 

Keller box methods as described by (Cebeci and Bradshow, 1977,a) had used.  The 

solution of an equation by this method can be obtained by the following: 

1- Reduce the equation to a first order system. 

2-Write the difference equations by using central differences. 

3-Linearize the resulting algebraic equations if they are nonlinear and write them in a                        

matrix vector form.       

4-Solve the linear system by block-elimination method.  

2.1 Numerical Formulation: 
 

In this chapter, an iterative implicit method due to Keller (1978). is now 

described and is referred to as the Box-method. This method has several desirable 

features that make it appropriate for the solution of all parabolic partial differential 

equations. (Anderson et al., 1984).  

2.1A   Finite-Difference scheme: 
 

The system of coupled partial differential equations (3.24-3.27) and their 

boundary conditions (3.28) and (3.30) can be written as following: 

A: 

Momentum equation: 

( ){ } θ ′=
′

′+′′ 3
2

21 mfmfm       (4.1) 

Energy equation: 

      ( ) ( ) 0
2
1 3

5
2

433 =′+′+′+′+′′+′′ fmfmfmm θθθηθ    (4.2) 
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with the following boundary conditions: 

0),(),(
)0,(1)0,(0)0,(

2

*

=∞=∞′

′=−=

ζθζζ

ζθζθζ

f
Pf

     (4.3) 

B: 

Momentum equation: 

       ( ){ } θ ′=
′

′+′′ 3
2

21 mfmfm         (4.4) 

Energy equation: 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂′−

∂
∂′=′+′+′+′+′′+′′

χ
θ

χ
θθθθηθ ffmfmfmfmmm 8

3
7

2
6544     (4.5) 

with the following boundary conditions: 

0),(1),(
)0,(1)0,(0)0,( *

=∞=∞′
′=−=

χθχ
χθχθχ

f
Pf

     (4.6) 

where the values of the coefficients m1, m2…m8 are given in appendix (A).  

First will write equations (4.1-4.2) in case A, and equations (4.4-4.5) in second case B 

with their boundary conditions in terms of first order systems. For this purpose 

introduced new dependent variables U and V. So that the transformed momentum and 

energy equations can be written as: 

A: 

   Uf =′        (4.7) 

   V=θ        (4.8) 

( )( ) VmUmum 3
2

21 =
′

+′       (4.9) 

( ) ( ) 0
2
1 3

5
2

433 =++++′+′ UmUmfVVmVmV η    (4.10) 
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with the boundary condition equations (4.3), which can be written as: 

0),(),(
)0,(1)0,(0)0,(

2

*

=∞=∞

=−=

ζθζζ

ζζθζ

U
VPf

   (4.11) 

B: 

Uf =′        (4.12) 

V=′θ          (4.13) 

( ){ } VmUmUm 3
2

21 =
′

+′       (4.14) 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=++++′+′
χχ

θη fVUmUmUmfVmVmVmV 8
3

7
2

6544   (4.15) 

with the boundary condition equations (4.6), which can be written as: 

0),(1),(
)0,(1)0,(0)0,( *

=∞=∞
=−=

χθχ
χχθχ

u
VPf

   (4.16) 

Next consider the rectangular system shown in figure (4.1), and denote the net points 

by: 

ζ0=0  ζn= ζn-1+kn        n=1,2,…N 

η 0=0   η j= η j-1+hj        j=1,2,…J 

 

 

   

 

 

 

                                                  

Figure 3 Rectangular net for difference approximation 

hj

kn

ζn-1 ζn-1/2 ζn 

η n-1 

η n-1/2 

η n 
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Any quantity (g) at point (ζn, η j) is written as ( n
jg ). Quantities at the midpoints of 

grid segments are approximated to second order as: 

( )12/1

2
1 −− += n

j
n
j

n
j ggg ,               ( )n

j
n
j

n
j ggg 12/1 2

1
−− +=  

And derivatives are approximated to second order as: 

 ( )11
2/1

−−
−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ n

j
n
jn

n

j

ggkg
ζ

,        ( ) ( )n
j

n
jj

n
j gghg 1

1
2/1

\
−

−
− −=  

Quantity at the midpoints of the grid (n-1/2,j-1/2) are approximated as: 

( )1
2/12/1

2/1
2/1 2

1 −
−−

−
− += n

j
n
j

n
j ggg  

And derivatives are approximated to second order as: 

( )1
2/12/1

1
2/1

2/1

−
−−

−
−

−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ n

j
n
jn

n

j

ggkg
ζ

,   ( ) ( ) ( )( )1
2/1

\
2/1

\2/1
2/1

\

2
1 −

−−

−

− +=
n
j

n
j

n
j ggg  

The difference equations that are to approximate equations (4.7-4.8) and (4.12-4.13) are 

obtained about the midpoint (ζn, η j-1/2), and those to approximate equations (4.9-4.10) 

and (4.14-4.15) are obtained by averaging about (ζn-1/2, η j-1/2), this will give the 

following system of equations: 

A: 

( ) ( ) 0
2 11 =+−− −−

n
j

n
j

jn
j

n
j UU

h
ff       (4.17) 

( ) ( ) 0
2 11 =+−− −−

n
j

n
j

jn
j

n
j VV

h
θθ        (4.18) 

( ) ( ) ( ){ } ( ) 1
2/11

3
1

221
21

1
1 2

−
−−−

−
−

− =+−−+− n
j

n
j

n
j

n
n
j

n
jj

n
j

n
jj RVV

m
UUhmUUhm   (4.19) 

( )( ) ( ) ( ) ( ){ }

( ) ( ){ } ( ) ( ){ } 1
2/11

336
1

225

11
4

1
1

2/14
1

22

4
1

2
−

−−−

−−−
−

−
−

=+++

+++++−+

n
j

n
j

n
j

n
n
j

n
j

n

n
j

n
j

n
j

n
j

n
n
j

n
jjj

n
j

TUU
m

UU
m

fVfVVV
m

VVhmh η
  (4.20) 
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where 

( ) ( ) ( ){ }[ ] 1
1

221
21

1
2/13

1
2/1

−

−
−

−
−

−
−
− −−−−=

n
jjjjjjj

n
j UUhmUUhVmR    (4.21)

  

and 

( )( ) ( ) ( )
( )

1

2/1
3

6

2/1
2

52/12/141
1

2/14
1

1
2/1 2

1 −

−

−−−−
−

−
−

−
−

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

−

−−−−+−
=

n

j

jjjjjjjjn
j

Um

UmfVVmVVhmh
T

η
(4.22) 

 

  B: 

( ) ( ) 0
2 11 =+−− −−

n
j

n
j

jn
j

n
j UU

h
ff       (4.23) 

( ) ( ) 0
2 11 =+−− −−

n
j

n
j

jn
j

n
j VV

h
θθ        (4.24) 

( ) ( ) ( ){ } ( )n
j

n
j

n
j

n
jj

n
j

n
jj

n
j VV

m
UUhmUUhmR 1

3
1

221
21

1
1

1
2/1 2 −−

−
−

−−
− +−−+−=             (4.25) 

and 

( ) ( ){ } ( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( )

( ) (4.26)
2

222

222

2222

1
1

2/1

1
1

2/11
1

2/11

1
337

1
226

1
1

1
1

2/1
41

2/14
11

2/1
41

2/14
11

2/1

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
j

n
n
j

n
j

n
n
j

n
j

n
j

n
jjjj

n
j

n
jjjj

n
j

ffV

UUUUU

UU
m

UU
m

fVfV

VfmhmhVfmhmhT

−
−

−

−
−
−−

−
−−

−−−

−
−

−
−

−
−−

−
−

−
−−

−

+

++−+++

−++++++

⎟
⎠
⎞

⎜
⎝
⎛ +−+−⎟

⎠
⎞

⎜
⎝
⎛ −++=

α

θθαθαθθα

α

αηαη

 

where 

51

2/1
8

m

k
m

n

n

+=

=
−

αα

α
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and 

 

{ }[ ] 1
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1
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−

−
−
− −−−−=

n
jjjjjjj

n
j UUhmUUhmVmR    (4.27) 
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−
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⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−−−

−+−−−
=

n

jjjj

jjjjjjjn
j UmUmfVmVm

VVhmhUfV
T

ηθα
  (4.28) 

 

Equations (4.17-4.28) are imposed for j=1,2,3,4…J at given n, and the transformed 

boundary layer thickness  (η∞) is required to be sufficiently large enough, that require   

Q (η∞) is less than approximately 10-5. 

The boundary conditions given by equation (4.11) for the case A become: 

0

10

2

*

==

=−=

n
J

n
J

n
o

n
o

n
o

U

VPf

θζ

θ
    (4.29) 

And the boundary conditions given by equation (4.16) for the second case B becomes: 

 

01

10 *

==

=−=

n
J

n
J

n
o

n
o

n
o

U

VPf

θ

θ
    (4.30) 

2.1.B   Newton’s Method: 
 

  Assume 111 ,, −−− n
j

n
j

n
j Uf θ and 1−n

jV are known for Jj≤≤0 then 

the equations (4.17-4.20) for the first case, and equations (4.23-4.26) for the second 

case form systems of 4J+4 nonlinear equations. To solve these nonlinear systems of 

equations and its unknowns ),,,( n
j

n
j

n
j

n
j VUf θ , j=0,1,2…J, will use Newton’s method 
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and introduce the iteration ),,,( i
j

i
j

i
j

i
j VUf θ , i=0,1,2…I, with initial values 

equal to those at the previous ζ station. 

For the higher iterates set: 

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

i
j

VVV

UUU

fff

δ

δθθθ

δ

δ

+=

+=

+=

+=

+

+

+

+

1

1

1

1

 

then insert the right-hand sides of the above expression in places of 

),,,( i
j

i
j

i
j

i
j VUf θ in equations (4.17-4.20) and equations (4.23-4.26) and drop 

the terms that are quadratic in ( i
j

i
j

i
j

i
j VUf δθδδδ ,,, ). With this procedure, 

equations (4.17-4.20), (4.23-4.26) and (4.29-4.30) become:(the subscript i in the δ 

quantities is dropped for simplicity) 

A: 

( ) ( ) 1211 2 −−− =+−− jjj
j

jj rUU
h

ff δδδδ     (4.31) 

( ) ( ) 1411 2 −−− =+−− jjj
j

jj rVV
h

δδδθδθ     (4.32) 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) jjjjjjj

jjjjjjjjjj

rSVSUS

fSSVSUSfS

1181716

154321

=+++

++++

−−−

−

δθδδ

δδθδδδ

    (4.33) 

 

( ) ( ) ( ) ( ) ( )
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jjjjjjjjjj

rBVBUB
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3181716

154321

=+++

++++

−−−

−

δθδδ
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    (4.34) 
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where the right hand sides of the above equations are given by: 

( ) ( ) { }[ ]n
j

n
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n
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221
21

1
1

1
2/11 )()( −−

−
−

−−
− −−+−−=   (4.35) 

( ) 2/1112 −−− +−= jjjjj Uhffr         (4.36) 

( ) 2/1114 −−− +−= jjjjj Vhr θθ         (4.37) 
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B: 

( ) ( ) 1211 2 −−− =+−− jjj
j

jj rUU
h

ff δδδδ     (4.39) 

( ) ( ) 1411 2 −−− =+−− jjj
j

jj rVV
h

δδδθδθ     (4.40) 
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where the right hand sides of the above equations are given by: 
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( ) 2/1112 −−− +−= jjjjj Uhffr         (4.44) 

( ) 2/1114 −−− +−= jjjjj Vhr θθ         (4.45) 
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  (4.46) 

 

Where (Sk)j  (k=1 to 8) and (Bk)j  (k=1 to 8) are the coefficients of the linearized 

momentum and energy equations. Their values are found in Appendix (A). 

And the boundary conditions equations (4.29-4.30), for two cases can be written as 

following: 

A: 

00

00

==

==

JJ

oo

U

f

δθδ

δθδ
     (4.47) 

B: 

00

00

==

==

JJ

oo

U

f

δθδ

δθδ
     (4.48) 

Note that: for the boundary condition n
o

n
o VP*1 =−θ , where put 0=oδθ , in 

equations (4.47) and (4.48) when linearized equations (4.29-4.30). That will be correct 

in the program, which will use to solve these equations by adding another condition to 

this program, which satisfy the required boundary condition for these cases. The 

solution of the linear system given by equations (4.31-4.34) for the first case A, and by 
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equations (4.39-4.42) for the second case B can be obtained by the block elimination 

method as described by Cebeci and Bradshow (1977). To introduce the solution 

procedure must define three-dimensional vectors δj and rj for each value of j by: 
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And the 4x4matrices Aj, Bj, Cj by: 
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Note that the first row and third one of Ao and Co, and the second and the last 

rows of AJ and Bj are corresponding to the boundary conditions (equations 4.47and 

4.48). it can be shown that the system of equations(4.31-4.48) can be written as: 

 

[A] δ = r     (4.56) 

Where  
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⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−

J

J

J

J

r
r

r
r
r

r

1

2

1

0

1

2

1

0

.

.,
.
. rr

δ
δ

δ
δ
δ

δ  

 

Where A, B and C are 4x4 matrices, and δ and r are vectors as follows: 

                 δ={ δf  ,  δU ,   δV ,   δθ } 

                 r={  r1 ,    r2 ,    r3   ,    r4 } 

 
2.2  Numerical aspects of solution: 
 

The convergence, grid spacing, and high-order accuracy of the computational 

scheme is a very important task to be considered.  In the following are some notes 

concerning these aspects. 

2.2.A Stability:  
 

Since numerical solutions represent a subsequent operations, and when the 

errors in the procedure is not grow then the solution scheme is stable. These errors in 

the solution are known as descretization errors, these errors caused by replacing the 

continuous problem by a discrete one, also, it may be transitional errors corresponding 

to neglecting higher order terms in the Taylor series expansion or other errors result 

from the treatment of the governing equations and boundary conditions.  

While for round off errors, the numerical solutions rounded to a finite number of 

digits in the arithmetic operations. And to reduce the effect of round off errors the 

double precision option has been used. 
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2.2.B Boundary layer Grid: 
 

The Keller box scheme is unique in that various spacing in both the ζ and η 

directions can be used. A convenient and useful η net, which is recommended by Cebeci 

and Smith (1977), having the property that the ratio of lengths of any two adjacent 

intervals is a constant is used. 

The value of ∆η and ∆ ζ spacing, have chosen are the values, which have not 

changed the solution. 

2.2.C Boundary layer Thickness: 
 

The choice of η∞ is an important consideration. However, the chosen value of η∞ 

has to be examined closely in each case to determine the validity of the choice. The 

value of η∞ is varied and, in each case, the convergent solution is obtained. The value of 

η∞ chosen finally is the one for which an increase beyond this value dose not alter the 

convergent solution significantly. 
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RESULT AND DISCUSION 

 

1.   Introduction: 
 

The MHD-mixed convection heat transfer problems with conjugate conduction 

boundary effects across the hollow cylinder including the effects of viscous dissipation 

between fluids layers are analyzed. The buoyancy aiding and opposing flows have been 

studied, and the non-similar solutions are obtained using the finite difference scheme 

known as the Keller box method where, the solutions are generated for a range of values 

of the axial non-similar coordinate ζ and the conjugate conduction parameter p*. The 

results are obtained in terms of Re, Re*, λ, ε, p*, Ge, Ge*and H , where H =1+Ha2/ ε 

represents the effect of the magnetic field strength, Re the inertial force parameter, Re* 

=Re/ ζ2 represents the modify inertial force parameter, λ the curvature surface effect, ε 

the effect of the porosity on the fluid, p* the conjugate conduction effect, Ge is Gebhart 

number and represents the viscous dissipation effect, and Ge*=Ge/(1- ζ)2 represents 

modifed Gebhart number effect. 

The effects of all parameters above included in the final system of partial 

differential equations and there effects on the velocity and temperature profiles, rate of 

heat transfer and the local wall shear stress were computed and presented for both 

Darcian and non-Darcian models. 

Note that for a hollow cylinder, where the temperature on the inner surface is 

maintained at a constant value of Tb, the temperature on the outer surface of cylinder 

given by equation (3.12) depends on the coupled solution of the conduction across the 

cylinder and the mixed convection of the fluid-saturated porous medium over the 

cylinder.   
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2. Magnetohydrodynamic effects: 
 

The Magneto hydrodynamic effects can be studied by using different values of 

H  in the momentum and energy equations, for both buoyancy aiding and opposing 

flows. Results for velocity and temperature profiles ),( ηζf ′ and ),( ηζθ for different 

values of H  are drawn. 

For the mixed convection heat transfer problem it is noted as shown in figures 

(5.1-5.8), increasing the magnetic influence number H , had decreased the velocity 

inside the boundary layer and also increased the temperature of the flow inside the 

boundary layer for the buoyancy aiding flow; because the magnetic effect on this 

problem is found to retard the motion of the fluid and to heat it at the same time, this 

effect is analogous to the flow against an adverse pressure gradient which tend to reduce 

the velocity inside the boundary layer, and hence the heat transfer rates between the 

fluid layers. But for the buoyancy opposing flow increasing the magnetic influence 

number had increased the velocity inside the boundary layer because it reduces the 

effect of the buoyancy forces, and in this case the effect of the magnetic field is to 

increase the heat transfer rate, this results because the magnetic force acts like favorable 

pressure gradient on accelerating fluid which increases the velocity, so the motion of the 

fluid becomes more effective in moving the heat and hence the thermal boundary layer 

becomes thinner. 

For the MHD-forced convection heat transfer problem (case A) as shown in 

figures (5.9-5.11) increasing the magnetic field parameter haven’t any effect on the 

velocity inside the boundary layer with effect on the heat transfer rate, where the 

temperatures of the fluid inside the boundary layer increase, because the magnetic field 

acts to heat the fluid inside the boundary layer, where the fluid has a thermal resistance 

against the electrical current which has produced by the magnetic field inside the 
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boundary layer, this resistance will dissipate in the fluid as heat to increase its 

temperature.     

 For MHD-free convection heat transfer problem (case A) as shown in figures 

(5.12-5.13), increasing the magnetic field parameter H , had decreased the velocity 

inside the boundary layer and increased the temperature of the fluid. because of the 

magnetic field forces which act to retard the motion of the fluid and to heat it at same 

time. 
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           Fig 4 Dimensionless velocity profiles for different H
                                     (mixed convection-A)
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           Fig 5 Dimensionless temperature profiles for different H
                                     (mixed convection-A)
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           Fig 6 Dimensionless velocity profiles for different H
                                     (mixed convection-A)
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           Fig 7  Dimensionless temperature profiles for different H
                                     (mixed convection-A)
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           Fig 8 Dimensionless velocity profiles for different H
                                     (mixed convection-B)
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           Fig 9 Dimensionless temperature profiles for different H
                                     (mixed convection-B)
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           Fig 10 Dimensionless velocity profiles for different H
                                     (mixed convection-B)
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           Fig 11 Dimensionless temperature profiles for different H
                                     (mixed convection-B)
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           Fig 12 Dimensionless velocity profiles for different H
                                     (Forced convection)
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         H = 1, 2, 3, 5( Aiding)

           Fig 13 Dimensionless temperatureprofiles for different H
                                     (Forced convection)
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         H = 1, 2, 3, 5( Opposing)

           Fig 14 Dimensionless temperatureprofiles for different H
                                     (Forced convection)
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           Fig 15 Dimensionless velocity profiles for different H
                                     (Free convection)
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H = 1, 2, 3, 5(Aiding)

           Fig 16 Dimensionless temperature profiles for different H
                                     (Free convection)
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3. Viscous dissipation effects: 
 

The effect of viscous dissipation term is included in the energy equations 

through Ge*, Ge numbers. Results for velocity and temperature profiles are presented in 

figures (5.14-5.21) for mixed convection heat transfer aiding and opposing flows for 

different values of Ge*, Ge numbers for the two cases. These figures show that 

increasing Ge*, Ge numbers had increased the velocity for the buoyancy aiding flow 

and decreased it for the buoyancy opposing flow. The effect of viscous dissipation again 

is to heat the fluid due to the work done by the viscous forces, which leads to arise in 

the fluid temperature, and so decrease the heat transfer rate from the cylinder surface for 

both buoyancy aiding and opposing flows. increasing the temperature of the fluid leads 

to increase the buoyancy force which leads to increase the velocity in the aiding flow 

and decrease it in the opposing flow. 

Figures (5.22-5.25) show the effect of Ge* number on the velocity and the 

temperature profiles for forced convection heat transfer problem. Where Ge* number 

has no effect on the velocity profiles, but it increases the fluid temperature and decrease 

the heat transfer rate because of the excess heating of the fluid. 

Figure (5.26) and figure (5.27) show the effect of Ge* number on the velocity 

and the temperature profiles for free convection heat transfer problem. These figures 

show that increasing Ge* number had increased the velocity and decreased the heat 

transfer rate in the flow. This effect is similar to the effect of viscous dissipation on the 

mixed convection aiding flow.    
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           Fig 17 Dimensionless velocity profiles for different Ge*
                                     (mixed convection-A)
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0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14 16 18 20

   Ge*= 0,0.001,0.01(Aiding)

           Fig 18 Dimensionless temperature profiles for different Ge*
                                     (mixed convection-A)
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           Fig 19 Dimensionless velocity profiles for different Ge*
                                     (mixed convection-A)
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           Fig 20 Dimensionless temperature profiles for different Ge*
                                     (mixed convection-A)
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           Fig 21 Dimensionless velocity profiles for different Ge
                                     (mixed convection-B)
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             Fig22Dimensionless temperature profiles for different Ge
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               Fig 23 Dimensionless velocity profiles for different Ge
                                     (mixed convection-B)
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           Fig 24 Dimensionless temperature profiles for different Ge
                                     (mixed convection-B)
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            Ge*=0,0.001,0.01
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           Fig 25 Dimensionless velocity profiles for different Ge*  
                                     (Forced convection)
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           Fig 26 Dimensionless temperature profiles for different Ge* 
                                     (Forced convection)
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           Fig 27 Dimensionless velocity profiles for different Ge*  
                                     (Forced convection)
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           Fig 28 Dimensionless temperature profiles for different Ge*     
(Forced convection)
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           Fig 29 Dimensionless velocity profiles for different Ge*  
                                     (Free convection)
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           Fig 30 Dimensionless temperature profiles for different Ge*  
                                     (Free convection)
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4. Surface curvature effects: 
 

The curvature effects in the case of flow along vertical cylinder are introduced 

by the parameter λ. The physical values of λ depend on the radius of the cylinder (ro) 

and Pex. The radius of the cylinder ro must be small compared to x for the assumption of 

infinite cylinder to be valid with boundary layer approximation (for x>0)(Aldoss et al., 

1996). The magnitude of λ is proportional to the ratio of the boundary layer thickness to 

the cylinder radius. Consequently, small values of λ correspond to relatively thin 

boundary layer and small deviations from the flat plate problem, whereas large values 

of λ correspond to relatively to thick boundary layer and large deviation from the flat 

plate problem. The case of vertical flat surface can be studied by setting λ=0 in the 

governing equations. 

The effect of λ on both velocity and temperature profiles is shown in figures 

(5.28-5.39). Where the effects of λ on the velocity and temperature profiles for the 

mixed convection heat transfer (aiding and opposing flows) are shown in figures (5.28-

5.35), from these figures it is seen that for the buoyancy aiding flow as λ increases the 

velocity decreases, but the magnitude of the velocity after a certain limit will increase 

and the heat transfer rate from the cylinder surface increases. For the effects of λ on the 

buoyancy opposing flow as shown in figures, as λ increases the velocity increases and 

the velocity magnitude after a certain limit decreases, the heat transfer rates from the 

surface of the cylinder increase.   

 Figures (5.36-5.39) show the effects of λ on forced convection heat transfer rates 

where it is seen that as λ increases the heat transfer rates increase. This observation is in 

a good agreement of the fact that large λ corresponds to larger surface area and this tend 

to increase the heat transfer rates from the surface. It is noted that for pure free 

convection heat transfer λ is not appropriate as a curvature parameter; because λ has in 
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its definition Pex. Where the effect of cylinder curvature in case of pure free convection 

is reported by (Minkowyez and cheng, 1976 and Aldoss et al,1996). 
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           Fig 31 Dimensionless velocity profiles for different λ
                                     (mixed convection-A)

λ= 0,0.25,0.5,0.75,1(Aiding)
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           Fig 32 Dimensionless temperatureprofiles for different λ
                                     (mixed convection-A)
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           Fig 33 Dimensionless velocity profiles for different λ
                                     (mixed convection-A)

λ= 0,0.25,0.5,0.75,1(Opposing)
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           Fig 34 Dimensionless temperatureprofiles for different λ
                                     (mixed convection-A)
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           Fig 35 Dimensionless velocity profiles for different λ
                                     (mixed convection-B)
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           Fig 36 Dimensionless temperature profiles for different λ
                                     (mixed convection-B)
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           Fig 37 Dimensionless velocity profiles for different λ
                                     (mixed convection-B)

λ= 0,0.25,0.5,0.75,1(Opposing)
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           Fig 38 Dimensionless temperature profiles for different λ
                                     (mixed convection-B)

λ= 0,0.25,0.5,0.75,1(Opposing)
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       λ=0,0.25,0.5,0.75,1 ( Aiding )

           Fig 39 Dimensionless velocity profiles for different λ
                                     (Forced convection)
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           Fig 40 Dimensionless temperature profiles for different λ
                                     (Forcedconvection)
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  λ=0,0.25,0.5,0.75,1 ( Opposing )

           Fig 41 Dimensionless velocity profiles for different λ
                                     (Forced convection)
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           Fig 42 Dimensionless temperature profiles for different λ
                                     (Forced convection)

λ= 0,0.25,0.5,0.75,1 (Opposing)
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           Fig 43 Dimensionless velocity profiles for different λ
                                     (Free convection)
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           Fig 44 Dimensionless temperature profiles for different λ
                                     (Free convection)
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5. Inertial force effect: 
 

The parameters Re*, Re are found to characterize the effect of the inertial forces 

on the flow. Where the inertial term K ′ is proportional to pore diameter. Therefore. The 

inertia effects depend strongly on the pore size. For porous medium with small pores 

and low porosities, the permeability is small, and thus, shows negligible inertia effects. 

On the other hand, for porous media with large pores and properties, Re*, Re can be 

quite large. Even for normal temperature difference for the same geometry. 

Since in actual applications u∞ can be assumed to be of order one O(1), ν = O(10-4) 

and K ′= O(10-7).then the parameters Re*, Re become O(0.001). So that the values of 

Re*, Re (0,1,..10) are enough to test the effect of inertia (Aldoss et al.,1996). 

Results for temperature and velocity profiles are presented in figures (5.42-5.49) for 

mixed convection heat transfer rates (aiding and opposing flows), from these figures it 

is seen that, for the buoyancy aiding flow, as the inertia force increases the velocity and 

heat transfer rate decreases. But for the buoyancy opposing flow, it can be seen that an 

increase in the inertia force will increase the velocity and decrease the boundary layer 

thickness, which is contrary to the case of aiding flow. 

For forced convection heat transfer (aiding and opposing flows), figures (5.50-5.53) 

show that increasing inertia force decreases the rate of heat transfer as a result of 

increasing the boundary layer thickness. 

And the result for natural convection dominate regime are presented in figure (5.54) and 

figure (5.55), where figure (5.54) shows that increasing inertia force, decreases the 

velocity and increases the temperature inside the boundary layer, that means lower heat 

transfer rate at higher values of inertia force as shown in figure (5.55). 
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           Fig 45 Dimensionless velocity profiles for different Re*
                                     (mixed convection-A)

Re*= 0,1,2,10 (Aiding)

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14 16 18 20

 

           Fig 46 Dimensionless temperature profiles for different Re*
                                     (mixed convection-A)
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           Fig 47 Dimensionless velocity profiles for different Re*
                                     (mixed convection-A)

Re*= 0,1,2,10 (Opposing)
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           Fig 48 Dimensionless temperature profiles for different Re*
                                     (mixed convection)
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           Fig 49 Dimensionless velocity profiles for different Re
                                     (mixed convection-B)
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           Fig 50 Dimensionless temperature profiles for different Re
                                     (mixed convection-B)
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              Fig 51 Dimensionless velocity profiles for different Re
                                     (mixed convection-B)

Re= 0,1,2,10 (Opposing)
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           Fig 52 Dimensionless temperature profiles for different Re
                                     (mixed convection-B)
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 Re*=0,1,2,10 ( Aiding )

           Fig 53 Dimensionless velocity profiles for different Re*
                                     (Forced convection)
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           Fig 54 Dimensionless temperature profiles for different Re*
                                     (Forced convection)
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  Re*=0,1,2,10 ( Opposing )

           Fig 55 Dimensionless velocity profiles for different Re*
                                     (Forced convection)
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           Fig 56 Dimensionless temperature profiles for different Re*
                                     (Forced convection)
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           Fig 57  Dimensionless velocity profiles for different Re*
                                     (Free convection)

Re*= 0,1,2,10 (Aiding)
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           Fig 58 Dimensionless temperature profiles for different Re*
                                     (Free convection)
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6. Mixed convection parameter effects: 
 

The nonsimilarity parameter ζ in case A, measures the strength of mixed 

convection where the limit ζ=0 corresponds to pure natural convection while the other 

limit ζ=1 corresponds to pure forced convection. Thus. The values of ζ from zero to one 

cover all the possible strength of mixed convection including free and forced 

convections. 

The effect of ζ on the velocity and the temperature of the flow are demonstrated in 

figures (5.56-5.59), for the buoyancy aiding and the buoyancy opposing flows in the 

first case. It can be seen that an increase in ζ will increase the heat transfer rate and the 

thermal boundary layer thickness will decrease. This result is agreement with the fact, 

as ζ increases the velocity will increase. Thus. The heat transfer rate by convection will 

increase. 

For the case B, the strength of mixed convection had measured by (Rax/Pex). Where the 

limit Rax/Pex =0 corresponds to pure forced convection while the other limit 

Rax/Pex→∞ corresponds to pure natural convection. 

The effect of the mixed convection parameter (Rax/Pex) on the MHD- mixed convection 

buoyancy aiding and opposing flows on both velocity and temperature profiles are 

shown in figures (5.60-5.63). For the buoyancy aiding flow, increasing the mixed 

convection parameter had increased the velocity inside the boundary layer due to 

favorable buoyancy effects and consequently increased the heat transfer rate from the 

surface of the cylinder. While increasing the mixed convection parameter for the 

opposing flow had decreased the velocity inside the boundary layer due to increasing 

effect of the buoyancy force in opposite direction, and the heat transfer rates from the 

surface of cylinder will decrease.  
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                   Fig 59 Dimensionless velocity profiles for different ζ
                                                    (Aiding)
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               Fig 60Dimensionless temperature profiles for different ζ
                                                    ( Aiding )
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           Fig 61 Dimensionless velocity profiles for different ζ
                                            (Opposing)
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           Fig 62 Dimensionless temperature profiles for different ζ
                                              (Opposing )
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          Fig 63 Dimensionless velocity profiles for different Ra/Pe
                                                 (Aiding)
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           Fig 64 Dimensionless temperature profiles for different Ra/Pe
                                                (Aiding)
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           Fig 65 Dimensionless velocity profiles for different Ra/Pe
                                                (Opposing)
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           Fig 66 Dimensionless temperature profiles for different Ra/Pe
                                              (Opposing)
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7. Conjugate conduction parameter effects: 
 

The conjugate-conduction heat transfer parameter is described the effects of heat 

transfer by conduction in one dimension inside a solid wall on the boundary conditions 

of heat transfer inside the boundary layer. 

Figures (5.66-5.77) show the effects of the conjugate conduction numbers on the 

velocity and the temperature profiles for the buoyancy aiding and the buoyancy 

opposing flows. . For the buoyancy aiding flow increasing the conjugate numbers had 

decreased the velocity and the temperature inside the boundary layer, while increased 

and decreased the velocity and the temperature respectively, for the buoyancy opposing 

flow. 

The effects of increasing the conjugate numbers are found to decrease the heat 

transfer rates by conduction on the surface of cylinder and hence decreased its 

temperature. The effect of the buoyancy force will decrease inside the boundary layer 

and the velocity of the fluid decreased for the buoyancy aiding flow and increased for 

the buoyancy opposing flow respectively. 

 
8. Surface skin friction and surface heat transfer rates: 
 

In the present study, the effects of the different parameters on the local 

coefficient friction and on the local Nusselt numbers for the buoyancy aiding and 

opposing flows are drawn: Figures (5.78-5.85) show the effects of H on the local 

coefficient of friction and heat transfer rates for the buoyancy aiding and opposing 

flows. These figures show that increasing H had decreased the local coefficient of 

friction for the buoyancy aiding and opposing flows. While, increasing H  had 

decreased the heat transfer rates for the buoyancy aiding flow and increased it up to a 

certain limit, after which the magnetic field effects had decreased the local Nusselt 
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numbers for the buoyancy opposing flow. For the buoyancy aiding flow, the effects of 

H are found to retard the motion of fluid and heat it at same time, while for the 

buoyancy opposing flow effects of H are found to reduce effect of the buoyancy forces.  

The effect of the viscous dissipation on the local coefficient of friction and local 

Nusselt numbers are drawn in figures (5.86-5.93). Increasing Ge*,Ge had increased the 

local coefficient of friction and decreased the local Nusselt numbers respectively for the 

buoyancy aiding flow. While, decreased them for the buoyancy opposing flow. The 

effect of the viscous dissipation again is to heat the fluid inside the boundary layer and 

hence the buoyancy force becomes more effective in increasing or decreasing the 

velocity inside the boundary layer. 

Figures (5.94-5.101) show the effects of P* on the local coefficient of friction 

and local Nusselt numbers. These figures show that For the buoyancy aiding flow 

increasing the conjugate numbers had decreased the local coefficient of friction and 

local Nusselt numbers, this behavior is due to reducing the effects of the buoyancy 

forces as the heat transfer rates inside the solid surface decreased. While, for the 

buoyancy opposing flow increasing the conjugate numbers had increased the local 

Nusselt numbers up to a certain limit, after which the effects of the conjugate 

parameters had decreased the local Nusselt numbers. This behavior again subjected to 

reduce the effects of the buoyancy forces on the flow, where the velocity of the flow 

had increased inside the boundary layer.   

The effect of the modify inertial forces are drawn in figures (5.102-5.109) . these 

figures show increasing the inertial forces had decreased the heat transfer rates for the 

buoyancy aiding flow. While, increased it up to a certain limit for the buoyancy 

opposing flow after which, the heat transfer rates had increased.  
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The effects of the curvature is introduced by the parameter 2/1

2

xo Per
x

=λ   , where  

λ =0 corresponds to case of vertical flat surface. Figure(5.106-5.109) show the effects 

of λ  on the local coefficient of friction and local Nusselt numbers for the buoyancy 

aiding and opposing flows. . It can be see that increasing λ  had decreased the local 

coefficient of friction and increased the heat transfer rates for the buoyancy aiding flow. 

And increasing λ  had decreased the local coefficient of friction and increased the heat 

transfer rates for the buoyancy opposing flow. This behavior of the curvature effect is in 

a good agreement of the fact that larger λ  corresponds to larger surface area and this 

tend to increase the heat transfer rates from the surface. 
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           Fig 67 Dimensionless velocity profiles for different p*
                                             (Mixed convection-A )

P*= 0,1,2,3(Aiding)
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           Fig 68 Dimensionless temperature profiles for different p*
                                              (Mixed convection -A)

P*= 0,1,2,3(Aiding)
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            Fig 69 Dimensionless velocity profiles for different p*
                                        (Mixed convection -A)

P*= 0,1,2,3(Opposing)
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           Fig 70 Dimensionless temperature profiles for different p*
                                            (Mixed convection -A)

P*= 0,1,2,3(Opposing)
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            Fig 71 Dimensionless velocity profiles for different p*
                                      (Mixed convection-B )

P*=0,1,2,3(Aiding)

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7

           Fig 72 Dimensionless temperature profiles for different p*
                                              (Mixed convection-B )

P*=0,1,2,3(Aiding)
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            Fig 73 Dimensionless velocity profiles for different p*
                                       (Mixed convection -B)

P*=0,1,2,3(Opposing)
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           Fig 74 Dimensionless temperature profiles for different p*
                                         (Mixed convection -B)

P*=0,1,2,3(Opposing)
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          Fig 75 Dimensionless velocity profiles for different p*
                                      (Forced convection-B )
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           Fig 76 Dimensionless temperature profiles for different p*
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p*= 0,1,2,3(Aiding)

),( ηζf ′  

),( ηζθ  

η  

η  

H=2 
λ=1 
ζ=1 
ε=0.4 
Re*=1 
Ge*=0.001 

H=2 
λ=1 
ζ=1 
ε=0.4 
Re*=1 
Ge*=0.001 

A
ll 

R
ig

ht
s 

R
es

er
ve

d 
- 

L
ib

ra
ry

 o
f 

U
ni

ve
rs

ity
 o

f 
Jo

rd
an

 -
 C

en
te

r 
 o

f 
T

he
si

s 
D

ep
os

it



www.manaraa.com

 87

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8 10

               Fig 77  Dimensionless velocity profiles for different p*
                                            (Forced convection )
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           Fig 78 Dimensionless temperature profiles for different p*
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           Fig 79 Dimensionless velocity profiles for different p*
                                            (Natural convection)
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           Fig 80 Dimensionless temperature profiles for different p*
                                            (Natural convection )
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Effect of H on local skin friction and local Nusselt number (A) 
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Effect of H on local skin friction and local Nusselt number (B)
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Effect of Ge* on local skin friction and local Nusselt number (A) 
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Effect of Ge on local skin friction and local Nusselt number (B) 
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Effect of P* on local skin friction and local Nusselt number (A) 
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Effect of P* on local skin friction and local Nusselt number (B) 
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Effect of Re* on local skin friction and local Nusselt number (A) 
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Effect of λ on local skin friction and local Nusselt number (A) 
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Effect of λ on local skin friction and local Nusselt number (B) 
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9.  Comparison with other works: 
 
In order to assess the accuracy of the numerical method Keller Box method as described 

by Cebeci and Bradshow (1977). The results, which had obtained by using Keller 

method in this study had compared with some results, which had obtained by Hsieh et 

al. (1993).  

By comparing the values of the surface heat transfer )0,(/)0,( ζθζθ ′−  in this study to 

the values of the surface heat transfer )0,(ζθ ′−  at (Hsieh et al., 1993). for constant wall 

temperature on the entire mixed convection regime (aiding flow). The results in table 

5.1 show that there are a good agreement in these results with small difference may, 

however, be attributed to the different methods used, round off errors in the programs 

(precision). 

Table 5.1 shows the comparison of the surface heat transfer for the case of a vertical 

plate (λ=0), constant wall temperature ( 1)0,( =ζθ ), no conjugate conduction effect 

( 0=
∗

P ), and for the Darcy model ( 0Re =
∗

) and in absent of effect the magnetic field 

( H =1).      

Table 5.2 and table 5.3 show the values of the local Nusselt number, which had 

obtained in this study for the case of the flow over a vertical flat plate without effects of 

the conjugate conduction condition on the flow.  

In table 5.1  if the Rayleigh number is taken as Rax=100 and the corresponding Peclet 

number to be Pex=100. the Nux value for mixed convection (Rax=100, Pex=100). is 

7.19376.  But for pure forced convection (Pex=100, Rax=0), the Nux value is found to be 

5.6.  For the case of pure free convection (Rax=100, Pex=0), the Nux value is found to be 

4.44. From these result it is found that the predicted value of the local Nusselte number 

for mixed convection is higher than that for pure forced and pure free convection. 
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Table 1. Comparison between the ]/[ 2/12/1
xxx RaPeNu +

  
calculated 

by the present method and that of Hsieh et al.(1993). for the case of: 

[λ=0, 1)0,( =ζθ  , 0=
∗

P  , 0Re =
∗

 , H =1 ] 

 

 
ζ  

 
Present method 

 

Hsieh et al. 
(1993) 

 
Error (%) 

 

0 0.443114 0.4438 0.155 
0.1 0.403044 0.4035 0.113 
0.2 0.372798 0.3732 0.108 
0.3 0.354623 0.355 0.106 
0.4 0.350118 0.3506 0.137 
0.5 0.359688 0.3603 0.170 
0.6 0.382325 0.3832 0.228 
0.7 0.415963 0.4174 0.344 
0.8 0.45819 0.4603 0.458 
0.9 0.506798 0.5098 0.589 
1 0.560022 0.5642 0.741 
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Table 2. Values of local Nusselt number [ )0,(ζθ ′− ] at different values of ζ and at 
selected values of the magneticnumber H and viscous dissipation number Ge* for 
the case of vertical plate without conjugate effect.[ λ=0, P*=0]. 

 
 

 

 
 

 
Darcy Model 

Re*=0 
 

 
Non-Darcy Model 

Re*=1 

 
 
 
 
ζ H=1 

Ge*=0 
H=2 

Ge*=0 
H=1 

Ge*=0.001
H=2 

Ge*=0.001
H=1 

Ge*=0 
H=2 

Ge*=0 
H=1 

Ge*=0.001 
H=2 

Ge*=0.001
0 0.443749 0.313778 0.443114 0.313463 0.365758 0.292063 0.365237 0.291754 

0.1 0.403521 0.288226 0.403044 0.287982 0.340191 0.270994 0.33979 0.270753 
0.2 0.373184 0.276016 0.372798 0.275791 0.321051 0.26148 0.320717 0.261255 
0.3 0.35499 0.278485 0.354623 0.278207 0.31158 0.265737 0.311243 0.265454 
0.4 0.350551 0.29508 0.350118 0.294653 0.314962 0.28412 0.314524 0.283659 
0.5 0.360293 0.323698 0.359688 0.322987 0.332846 0.314953 0.332156 0.314133 
0.6 0.383232 0.361611 0.382325 0.360436 0.364271 0.355394 0.363099 0.353936 
0.7 0.417339 0.406302 0.415963 0.404435 0.406229 0.402545 0.404229 0.400043 
0.8 0.460238 0.455818 0.45819 0.452981 0.45525 0.454074 0.451924 0.449951 
0.9 0.509763 0.508769 0.506798 0.504626 0.508532 0.508322 0.503177 0.501788 
1 0.564191 0.564191 0.560022 0.558354 0.564191 0.564191 0.555852 0.554184 
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Table 3. Values of local Nusselt number [ )0,(ζθ ′− ] for different values of Rax/Pex 
and at selected valuesof theMagnetic number H and viscous dissipation number Ge 
for the case of vertical plate without conjugate effect.[ λ=0, P*=0]. 
 
 
 
 

 
 

 
 

 
Darcy Model 

Re=0 
 

 
Non-Darcy Model 

Re=1 

 
 
 
 
Rax/Pex H=1 

Ge=0 
H=2 
Ge=0 

H=1 
Ge=0.001

H=2 
Ge=0.001

H=1 
Ge=0 

H=2 
Ge=0 

H=1 
Ge=0.001

H=2 
Ge=0.001

0.5 0.647399  0.607315  0.644249 0.603568 0.592235 0.585701  0.586975 0.57965 
1 0.720588  0.647399  0.718492 0.645195 0.617158 0.605557  0.614132 0.602195 

1.5 0.786738  0.685018  0.784953 0.683314 0.639678 0.62403  0.637381 0.62155 
2 0.847583  0.720588  0.845926 0.719121 0.660278 0.641326  0.658341 0.63928 

2.5 0.90424  0.754415  0.902646 0.753083 -6.79E-01 -6.58E-01  -6.78E-01 -6.56E-01 
3 0.95748  0.786738 0.955906 0.785488 0.697017 0.673001 0.695423 0.671379
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CONCLUSIONS AND RECOMMENDATIONS  
 

1. Conclusions: 
 

In this study, the MHD-mixed convection heat transfer along vertical slender, 

hollow cylinder embedded in a saturated porous medium with conjugate-conduction 

heat transfer in a solid surface included in the boundary conditions and viscous 

dissipation effects included in the energy equation had analyzed using formulations with 

one nonsimilar variable ζ ending to the following conclusions: 

1. Increasing the magnetic influence numbers had decreased the heat transfer 

rates for the buoyancy aiding flow, while for the buoyancy opposing flow, 

increasing the magnetic influence numbers had increased the heat transfer 

rates up to certain limit after which the heat transfer rates had decreased. 

 
2. Increasing the viscous dissipation parameter had decreased the heat transfer 

rates for the buoyancy aiding and the buoyancy opposing flows. 

 
3.   Increasing the curvature numbers had increased the heat transfer rates for 

the buoyancy aiding and the buoyancy opposing flows. Where for  λ=0, the 

problem reduced to flow over a vertical plate. 

 
4. Increasing the inertia numbers had decreased the heat transfer rates for the 

buoyancy aiding flow. While increasing the inertia terms for the buoyancy 

opposing flow had increased the heat transfer rates up to certain limit after 

which the heat transfer rates had decreased. 
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5. Increasing the conjugate conduction numbers had decreased the heat transfer 

rates for the buoyancy aiding flow. And increase it up to certain limit and 

then the heat transfer rates will decrease again. 

 
6. For the case A (entire regime): as the mixed convection parameter ζ, 

increases the values of Nusselt numbers will increase. This is due to the fact 

the values of Nusselt numbers of mixed convection regime are higher than 

those of the pure forced convection or pure free convection limits. 

   
7. For the case B (mixed convection regime): as the mixed convection 

parameter (Rax/Pex) increases, the effects of the free convection will 

increase, thus enhancing the heat transfer rates. Whereas for the buoyancy 

opposing flow the heat transfer rates will decrease as the mixed convection 

parameter (Rax/Pex) increases.   
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2. Recommendations: 
 

In the present work, the conjugate mixed convection heat transfer along vertical 

slender, hollow cylinder with MHD effects has been investigated. The following 

suggestions for further investigation based on the previous work are recommended: 

1. Studying the effect of changing the boundary conditions to be constant 

heat flux at the cylinder surface. 

 

2. Studying the effect of the conjugate conduction heat transfer parameter 

in the solid to be in two dimensions instead of one dimension. 

 

3. Studying the problem with effect of radiation from the surface of the 

cylinder. 

 

4.  Studying the problem with variations of both velocity and temperature 

fields in time. 

 

5. Studying the mass diffusion may be included within the governing 

equations. 

 

6. Studying the effect of injection or withdrawal of fluid from the cylinder. 
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APPENDIX A 
 
 

COEFFICIENT OF MOMENTUM AND ENERGY EQUATION 

The values of the coefficients in equations 4.1 and 4.2  

m1=H 

m2 = Re* 

m3 = ± ( 1-ζ )2 

m4 = λ ×ζ 

m5 = Ge*×[1+ε × (H-1)] 

m6 = Ge* × Re* 

The coefficients of the linearized momentum equation 4.33: 

(Sk)j (k=1 to 8) are: 
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The coefficients of the linearized energy equation 4.33: 

(Bk)j (k=1 to 8) are: 

0)(

4
1

2
)(

2
3)(

4
1)(

0)(

4
1

2
)(

2
3)(

4
1)(

8

1
41

42/1
1

7

2
16156

15

4

41
42/1

1
3

2
652

1

=

++−−=

+=

=

=

+++=

+=

=

−
−

−
−

−−

−

−
−

−

j

j

n

j
n

jjj

j
n

j
n

j

jj

j

j

n

j
n

jjj

j
n

j
n

j

jj

B

fmhmhB

UmUmB

VB

B

fmhmhB

UmUmB

VB

η

η

 

The values of the coefficients in equations 4.4 and 4.5  

m1=H 

m2 = Re 

m3 = 
x

x

Pe
Ra

±  

m4 = λ  

m5 = 0.5 

m6 =
x

x

Ra
Pe  [1+ε × (H-1)] × χ 
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m7 = 
x

x

Pe
Ra ×Re× χ 

m8 = χ 

The coefficients of the linearized momentum equation 4.41: 

(Sk)j (k=1 to 8) are: 
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The coefficients of the linearized energy equation 4.42: 

(Bk)j (k=1 to 8) are: 
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لط من على أسطوانة رأسية مفرغةأنتقال الحرارة المترافق بالحمل المخت  

في وسط مسامي مشبع وممغنط   

 

 

 عمل الطالب

 ياسر عبدو القبلاوي

 

 

 المشرف

حمزة مصطفى دويري. د  

 

 

 الملخص

 بوجود التأثير المختلط لأنتقال الحرارة  لكل من الحمل القسري  و الحمل الطبيعي، في هذه الدراسة

ي وسط مسامي مشبع  بوجود تأثيرات لزوجة السائل حقل مغناطيسي على أسطوانة رأسية مفرغة ف

بحثت حالتان من مسألة أنتقال الحرارة بالحمل . المتضمنة في المعادلات المتحكمة قد درست

 .المختلط و هما جريان سائل طفوي اضافي و جريان سائل طفوي معاآس

قد تمّ الحصول على و ، )طريقة آيلر(المعادلات المتحكمة حلّت بأستخدام طريقة الفرق المحدد

 و الذي يغطي آامل نطاق أنتقال ζالعدد الأول . الحلول بأستخدام نوعين من الأعداد اللابعدية

 تمثل حالة أنتقال ١=ζ تمتل أنتقال الحرارة بالحمل الطبيعي بينما ٠=ζ  حيث، الحرارة المختلط

 .تقال الحرارة بالحمل المختلط والذي يغطي أنχالعدد اللابعدي الثاني هو . الحرارة بالحمل القسري

عداد اللابعدية المختلفة على توزع السرعة و الحرارة اللابعديين في المنطقة درست تأثيرات الأ

الحدّية للجريان و أيضا تأثيراتها على عوامل احتكاك السطح الخارجي المحلية وعلى اعداد نسلت 

 . في آلتا الحالتينالمحلية و من ثمّ رسمت تأثيرات هذه الأعداد اللابعدية
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